New Gold Open Access STAR-ProBio Publication

Hybridised sustainability metrics for use in life cycle assessment of bio-based products: resource efficiency and circularity

 

Abstract

The development, implementation and social acceptance of resource efficient, circular, bio-based economies require critical understanding of the whole supply chain from feedstock to end-use. Trust, transparency and traceability will be paramount. Though life cycle assessment (LCA) is a universally chosen approach to fulfil this purpose, the nature of data required and the depth of analysis lead to complex interpretations of the findings. Herein, a new set of hybridised, first-line sustainability indicators, drawn from the principles of green chemistry and resource (material and energy) circularity, are reported. These flexible, potentially stand-alone metrics are demonstrated via application to an exemplary comparative LCA, incorporating the hybridised indicators including hazardous chemical use, waste generated, resource circularity and energy efficiency, from the “gate-to-gate” stages for the bio-based case studies and their petro-derived commercial counterparts. These metrics were observed to quantify critical new information relevant to our transition to a circular economy, bridging significant gaps in contemporary environmental impact assessment methodologies. Appropriate additional evaluations that examine the performance of metrics, when the embedded resource efficiency and circularity strategies are omitted, have also been undertaken and reported. The data drawn from employing these methods are crucial to inform and encourage operational optimisation, transparency in sustainability reporting and practices to a significant number of value-chain actors including manufacturers, policy makers and consumers.

Click here to read the full article.

Environmental Life Cycle Assessment of industrial pine Roundwood production in Brazilian forests

Fabiane Salles FerroDiogo Aparecido Lopes SilvaFelipe Hideyoshi IcimotoFrancisco Antonio Rocco LahrSara González-García

Pine (Pinus oocarpa) wood has great economic importance in Brazil. Pine stands represent the second largest reforested area in the country due to their industrial interest. Combining the relevance of industrial pine stands in the country and corresponding environmental concerns, this current study aims to identify and quantify the environmental impacts derived from industrial pine roundwood production in Brazil. The environmental study was developed considering the Life Cycle Assessment (LCA) methodology according to ISO14040 framework. The study convers the life cycle of pine roundwood production from cradle-to-forest gate perspective and considers the current practices in the country. The production system was divided in five main stages: Soil preparation, seedlings plantation, forest management, forest harvesting and infrastructure establishment. The environmental profile was estimated considering characterization factors from the ReCiPe method, in terms of twelve impact categories. According to the results, forest harvesting stage was identified as the environmental hotspot being the main responsible of contributions to nine impact categories under assessment with contributing ratios ranging from 21% (e.g., freshwater eutrophication) to 76% (e.g., photochemical oxidants formation). The high amount of fossil fuel required by heavy machinery used in the activities involved in this stage is behind this result. Soil preparation stage reported also an outstanding contribution in categories such as freshwater eutrophication (37%) and toxicity related categories (≈35%). The rationale behind these contributions is associated with the use of chemical fertilizers, mostly superphosphate. The identification of the environmental hotspots in forest biomass production can assist the Brazilian forest practitioners to improve the environmental profile by means of the optimization of forest practices.

Click here to read the article.

Comparative environmental Life Cycle Assessment of integral revalorization of vine shoots from a biorefinery perspective

Patricia GullónBeatriz GullónIzaskun DávilaJalel LabidiSara Gonzalez-Garcia

The use of vine shoots as feedstock in biorefining activities to obtain bioproducts under efficient and optimized conditions could be crucial to make future high added value compounds and processes more sustainable. In this study, five different potential valorization scenarios from vine shoots differing on diverse extraction and delignification steps were assessed from an environmental perspective using the Life Cycle Assessment methodology to identify the most sustainable biorefining route. The main findings from this study reported that an increment on the number of valorization steps involved higher energy and chemical requirements deriving on worse environmental profiles. Scenarios incorporating fermentation of the glucose liquors or organosolv delignification performed the worst profiles. Autohydrolysis, concentration and freeze drying and enzymatic hydrolysis were the main responsible stages of the environmental burdens. Further research should be focused on optimizing chemicals and electricity requirements to develop greener systems.

Click here to read the article.

Comparative evaluation of lignocellulosic biorefinery scenarios under a life‐cycle assessment approach

Gaps and Research Demand for Sustainability Certification and Standardisation in a Sustainable Bio-Based Economy in the EU

Stefan Majer, Simone Wurster, David Moosmann, Luana Ladu, Beike Sumfleth and Daniela Thrän

The concept of the bio-based economy has gained increasing attention and importance in recent years. It is seen as a chance to reduce the dependency on fossil resources while securing a sustainable supply of energy, water, and raw materials, and furthermore preserving soils, climate and the environment. The intended transformation is characterized by economic, environmental and social challenges and opportunities, and it is understood as a social transition process towards a sustainable, bio-based and nature-oriented economy. This process requires general mechanisms to establish and monitor safeguards for a sustainable development of the bio-based economy on a national and EU level. Sustainability certification and standardisation of bio-based products can help to manage biogenic resources and their derived products in a sustainable manner. In this paper, we have analysed the current status of sustainability certification and standardisation in the bio-based economy by conducting comprehensive desktop research, which was complemented by a series of expert interviews. The analysis revealed an impressive amount of existing certification frameworks, criteria, indicators and applicable standards. However, relevant gaps relating to existing criteria sets, the practical implementation of criteria in certification processes, the legislative framework, end-of-life processes, as well as necessary standardisation activities, were identified which require further research and development to improve sustainability certification and standardisation for a growing bio-based economy.

Click here to read the article.

Bridging the Gaps for a ‘Circular’ Bioeconomy: Selection Criteria, Bio-Based Value Chain and Stakeholder Mapping

Kadambari Lokesh, Luana Ladu and Louise Summerton

Bio-products and bio-based value chains have been identified as one of the most promising pathways to attaining a resource-efficient circular economy. Such a “valorization and value-addition” approach incorporates an intricate network of processes and actors, contributing to socio-economic growth, environmental benefits and technological advances. In the present age of limited time and funding models to achieve ambitious sustainable development targets, whilst mitigating climate change, a systematic approach employing two-tier multi-criteria decision analysis (MCDA) can be useful in supporting the identification of promising bio-based value chains, that are significant to the EU plans for the bio-economy. Their identification is followed by an elaborate mapping of their value chains to visualize/foresee the strengths, weaknesses, opportunities and challenges attributable to those bio-based value chains. To demonstrate this methodology, a systematic review of 12 bio-based value chains, prevalent in the EU, sourcing their starting material from biomass and bio-waste, has been undertaken. The selected value chains are mapped to visualize the linkages and interactions between the different stages, chain actors, employed conversion routes, product application and existing/potential end-of-life options. This approach will help chain-actors, particularly investors and policy-makers, understand the complexities of such multi-actor systems and make informed decisions.

Click here to read the article.